Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Radiat Oncol ; 9(3): 101404, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38292889

RESUMEN

Purpose: Most of radiation oncology centers rely on set-up skin markings for patient setup during treatment delivery. Permanent dark-ink tattooing is the most popular marking method. COMFORTATTOO is a unicentric, randomized trial testing 2 permanent methods: lancets against an electric marking pen (Comfort Marker 2.0, CM). One substudy was undertaken to test if using the CM translates into a cosmesis, fading, or satisfaction benefit compared with the lancets. Methods and Materials: Patients aged 18 years or older referred to our department to receive RT were recruited. They were randomly assigned, in a 1:1 ratio, to receive set-up markings using lancets or CM. This substudy aimed to recruit all the living participants included in the main study. The primary endpoints were tattoos cosmesis, tattoos fading, and patients' satisfaction 6 months after finishing the RT. Cosmetic and fading assessments were scored on a 5-point ascending scale and patients' satisfaction on a 10-point ascending scale. The trial is registered at ClinicalTrials.gov (number NCT05371795). Results: Between April and September 2022, 92 patients were enrolled (45 assigned to lancets and 47 to CM) and assessed for the outcomes. Patients receiving CM had significantly better cosmetic markings, with a median score of 4.4 (vs 3.7 for lancets, P<.001). On the fading assessment, the CM was associated with lower scores compared with the lancets (median score of 1.3 and 3.3, respectively; P<.001). No differences in patients' satisfaction were observed with either method (median score of 10 for both arms, P=.952). Conclusions: Our substudy results demonstrated that, 6 months after the end of RT, the CM produces better cosmetic markings with less fading compared with the lancets. These differences didn't translate into patients' satisfaction superiority toward any method.

2.
J Infect Dis ; 228(6): 723-733, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37279654

RESUMEN

The emergence of novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need to investigate alternative approaches to prevent infection and treat patients with coronavirus disease 2019. Here, we report the preclinical efficacy of NL-CVX1, a de novo decoy that blocks virus entry into cells by binding with nanomolar affinity and high specificity to the receptor-binding domain of the SARS-CoV-2 spike protein. Using a transgenic mouse model of SARS-CoV-2 infection, we showed that a single prophylactic intranasal dose of NL-CVX1 conferred complete protection from severe disease following SARS-CoV-2 infection. Multiple therapeutic administrations of NL-CVX1 also protected mice from succumbing to infection. Finally, we showed that infected mice treated with NL-CVX1 developed both anti-SARS-CoV-2 antibodies and memory T cells and were protected against reinfection a month after treatment. Overall, these observations suggest NL-CVX1 is a promising therapeutic candidate for preventing and treating severe SARS-CoV-2 infections.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/prevención & control , Ratones Transgénicos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
3.
ACS Cent Sci ; 9(5): 892-904, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37252343

RESUMEN

Nature has evolved intricate machinery to target and degrade RNA, and some of these molecular mechanisms can be adapted for therapeutic use. Small interfering RNAs and RNase H-inducing oligonucleotides have yielded therapeutic agents against diseases that cannot be tackled using protein-centered approaches. Because these therapeutic agents are nucleic acid-based, they have several inherent drawbacks which include poor cellular uptake and stability. Here we report a new approach to target and degrade RNA using small molecules, proximity-induced nucleic acid degrader (PINAD). We have utilized this strategy to design two families of RNA degraders which target two different RNA structures within the genome of SARS-CoV-2: G-quadruplexes and the betacoronaviral pseudoknot. We demonstrate that these novel molecules degrade their targets using in vitro, in cellulo, and in vivo SARS-CoV-2 infection models. Our strategy allows any RNA binding small molecule to be converted into a degrader, empowering RNA binders that are not potent enough to exert a phenotypic effect on their own. PINAD raises the possibility of targeting and destroying any disease-related RNA species, which can greatly expand the space of druggable targets and diseases.

4.
ACS Cent Sci ; 9(1): 109-121, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36712488

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) catalyzed the development of vaccines and antivirals. Clinically approved drugs against SARS-CoV-2 target the virus directly, which makes them susceptible to viral mutations, which in turn can attenuate their antiviral activity. Here we report a host-directed antiviral (HDA), piperlongumine (PL), which exhibits robust antiviral activity as a result of selective induction of reactive oxygen species in infected cells by GSTP1 inhibition. Using a transgenic K18-hACE2 mouse model, we benchmarked PL against plitidepsin, a HDA undergoing phase III clinical trials. We observed that intranasal administration of PL is superior in delaying disease progression and reducing lung inflammation. Importantly, we showed that PL is effective against several variants of concern (VOCs), making it an ideal pan-variant antiviral. PL may display a critical role as an intranasal treatment or prophylaxis against a range of viruses, expanding the arsenal of tools to fight future outbreaks.

5.
ACS Pharmacol Transl Sci ; 5(11): 1156-1168, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36407952

RESUMEN

Bruton's tyrosine kinase (BTK) is a member of the TEC-family kinases and crucial for the proliferation and differentiation of B-cells. We evaluated the therapeutic potential of a covalent inhibitor (JS25) with nanomolar potency against BTK and with a more desirable selectivity and inhibitory profile compared to the FDA-approved BTK inhibitors ibrutinib and acalabrutinib. Structural prediction of the BTK/JS25 complex revealed sequestration of Tyr551 that leads to BTK's inactivation. JS25 also inhibited the proliferation of myeloid and lymphoid B-cell cancer cell lines. Its therapeutic potential was further tested against ibrutinib in preclinical models of B-cell cancers. JS25 treatment induced a more pronounced cell death in a murine xenograft model of Burkitt's lymphoma, causing a 30-40% reduction of the subcutaneous tumor and an overall reduction in the percentage of metastasis and secondary tumor formation. In a patient model of diffuse large B-cell lymphoma, the drug response of JS25 was higher than that of ibrutinib, leading to a 64% "on-target" efficacy. Finally, in zebrafish patient-derived xenografts of chronic lymphocytic leukemia, JS25 was faster and more effective in decreasing tumor burden, producing superior therapeutic effects compared to ibrutinib. We expect JS25 to become therapeutically relevant as a BTK inhibitor and to find applications in the treatment of hematological cancers and other pathologies with unmet clinical treatment.

6.
Biochim Biophys Acta Mol Basis Dis ; 1867(2): 166016, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33246010

RESUMEN

To adapt to tumoral environment conditions or even to escape chemotherapy, cells rapidly reprogram their metabolism to handle adversities and survive. Given the rapid rise of studies uncovering novel insights and therapeutic opportunities based on the role of mitochondria in tumor metabolic programing and therapeutics, this review summarizes most significant developments in the field. Taking in mind the key role of mitochondria on carcinogenesis and tumor progression due to their involvement on tumor plasticity, metabolic remodeling, and signaling re-wiring, those organelles are also potential therapeutic targets. Among other topics, we address the recent data intersecting mitochondria as of prognostic value and staging in cancer, by mitochondrial DNA (mtDNA) determination, and current inhibitors developments targeting mtDNA, OXPHOS machinery and metabolic pathways. We contribute for a holistic view of the role of mitochondria metabolism and directed therapeutics to understand tumor metabolism, to circumvent therapy resistance, and to control tumor development.


Asunto(s)
Antineoplásicos/farmacología , Mitocondrias/patología , Neoplasias/patología , Efecto Warburg en Oncología/efectos de los fármacos , Antineoplásicos/uso terapéutico , ADN Mitocondrial/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Estadificación de Neoplasias , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosforilación Oxidativa/efectos de los fármacos , Pronóstico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética
8.
Cell Metab ; 29(2): 399-416.e10, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30449682

RESUMEN

Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.


Asunto(s)
ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/fisiología , Pirimidinas/metabolismo , Animales , Línea Celular Tumoral , Respiración de la Célula , Dihidroorotato Deshidrogenasa , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Ubiquinona/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2904-2923, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28760703

RESUMEN

Doxorubicin (DOX) is one of the most widely used anti-neoplastic agents. However, treatment with DOX is associated with cumulative cardiotoxicity inducing progressive cardiomyocyte death. Sirtuin 3 (Sirt3), a mitochondrial deacetylase, regulates the activity of proteins involved in apoptosis, autophagy and metabolism. Our hypothesis is that pharmacological modulation by berberine (BER) pre-conditioning of Sirt3 protein levels decreases DOX-induced cardiotoxicity. Our results showed that DOX induces cell death in all experimental groups. Increase in Sirt3 content by transfection-mediated overexpression decreased DOX cytotoxicity, mostly by maintaining mitochondrial network integrity and reducing oxidative stress. p53 was upregulated by DOX, and appeared to be a direct target of Sirt3, suggesting that Sirt3-mediated protection against cell death could be related to this protein. BER pre-treatment increased Sirt3 and Sirt1 protein levels in the presence of DOX and inhibited DOX-induced caspase 9 and 3-like activation. Moreover, BER modulated autophagy in DOX-treated H9c2 cardiomyoblasts. Interestingly, mitochondrial biogenesis markers were upregulated in in BER/DOX-treated cells. Sirt3 over-expression contributes to decrease DOX cytotoxicity on H9c2 cardiomyoblasts, while BER can be used as a modulator of Sirtuin function and cell quality control pathways to decrease DOX toxicity.


Asunto(s)
Berberina/farmacología , Cardiotónicos/farmacología , Doxorrubicina/efectos adversos , Mioblastos Cardíacos/enzimología , Estrés Oxidativo/efectos de los fármacos , Sirtuina 3/metabolismo , Línea Celular , Doxorrubicina/farmacología , Humanos , Proteínas Musculares/metabolismo , Mioblastos Cardíacos/patología
10.
Elife ; 62017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28195532

RESUMEN

Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ0 cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ0 mouse melanoma cells into syngeneic C57BL/6Nsu9-DsRed2 mice that express red fluorescent protein in their mitochondria. We document that mtDNA is acquired by transfer of whole mitochondria from the host animal, leading to normalisation of mitochondrial respiration. Additionally, knockdown of key mitochondrial complex I (NDUFV1) and complex II (SDHC) subunits by shRNA in B16ρ0 cells abolished or significantly retarded their ability to form tumours. Collectively, these results show that intact mitochondria with their mtDNA payload are transferred in the developing tumour, and provide functional evidence for an essential role of oxidative phosphorylation in cancer.


Asunto(s)
ADN Mitocondrial/genética , Transferencia de Gen Horizontal , Melanoma/patología , Animales , Línea Celular Tumoral , Respiración de la Célula , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
11.
Future Med Chem ; 6(13): 1499-513, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25365234

RESUMEN

There are many approaches used to control breast cancer, although the most efficient strategy is the reactivation of apoptosis. Since mitochondria play an important role in cellular metabolism and homeostasis, as well as in the regulation of cell death pathways, we focus here on metabolic remodeling and mitochondrial alterations present in breast tumor cells. We review strategies including classes of compounds and delivery systems that target metabolic and specific mitochondrial alterations to kill tumor cells without affecting their normal counterparts. We present here the arguments for the improvement of already existent molecules and the design of novel promising anticancer drug candidates that target breast cancer mitochondria.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Mama/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Sistemas de Liberación de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Femenino , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Terapia Molecular Dirigida/métodos , Fosforilación Oxidativa/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...